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The stability of the results of the Perturbative Configuration Interaction using Localized Orbitals 
(PCI LO) with respects to the choice of the hybrids and to the bond polarities is studied for several 
small strained molecules. The stability of 2 nd and 3 re orders is quite satisfactory. The pertinence of 
the maximum overlap criterion to build hybrids is discussed. 

An verschiedenen kleinen Ringen wird die Stabilit~it der Ergebnisse einer StGrungs-CI-Rechnung 
studiert, wobei bezfiglich der Wahl der Hybride und der BindungspolaritMen lokalisierte Orbitale 
benutzt werden. Die Stabilitfit der Ergebnisse ffir StGrungen 2. und 3. Ordnung ist zufriedenstellend. 
Das Kriterium der maximalen Oberlappung zurn Aufbau yon Hybriden wird diskutiert. 

On dtudie la stabilit6 des rdsultats de la mGthode: DGveloppement Perturbatif de la matrice 
d'Intcraction de Configuration en base d'Orbitales de Liaison (PICOL) par rapport aux paramGtres 
qui d&erminent les orbitales de liaison hybridation et polarit6 pour plusieurs petites molGcules con- 
traintes. La stabilit6 aux 26 et 36 ordres est assez bonne. On discute les rapports du critGre de Re- 
couvrement Maximum avec les probl6mes 6nergGtiques. 

1. Introduction 

In part I of this series [1] we proposed to build a fully localized determinant 
using bond orbitals, to build "excited" determinants with the corresponding 
antibonding orbitals and to express the energy of the ground state by a perturbation 
expansion of the Configuration Interaction matrix built in this basis set (Per- 
turbationnal Configuration Interaction using localized Orbitals: PCI-LO). The 
ZDO formulas have been given in part III [2] and a certain number of examples 
concerning small molecules with the CNDO hypothesis [3] about the atomic 
integrals. 

In the previous paper the bond orbitals were built in the simpliest way: we used 
two atomic hybrid orbitals, and the assumed state of hybridization was in general 
determined by the classical chemical picture. We only used sp 3, sp 2 or sp ca- 
nonical hybrids. The only degree of freedom concerned the oxygen lone pairs in 
the carbonyl group and the choice of sp g or sp hybridization did not influence 
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significantly the results. But in certain cases, and especially for small strained 
molecules, no canonical hybridization appears as natural, and the choice of some 
"best hybrids" could appear necessary. The first purpose of this paper is to analyse 
the influence of the assumed hybridization state on the zeroth, second and third 
order results of the ground state energy. By this analysis we try to verify the 
stability of the perturbation expansion with respect to the choice of the bond 
orbitals. The final result of the Configuration Interaction, and of the perturbation 
expansion if it converges, are of course insensitive to the choice of the hybrids, 
but the sum over the first terms of the series only are not. The differences should 
be more important at the zeroth than after third order. This study should give an 
indication about the rate of convergence of the series. The same type of investiga- 
tion has been performed about the other parameter of the bond orbital, namely 
the bond polarity which fixes the coefficients of the two hybrids in the bond 
orbital. 

The PCI-LO Method is very attractive for treating large systems, because of 
its high speed. But it needs a systematic method to choose the atomic hybrids. 
One could think of a systematic attribution of a canonical hybridization according 
to the number and the position of the neighbouring atoms. Another possibility is 
to determine the hybrids which give the maximum overlap in the chemical bonds. 
We decided to use this technique in our current programs. It is important then 
to see whether the maximum overlap criterion, which is a spatial criterion, and 
not an energetic one, is not too far from the hybridization which gives the lowest 
energy for the fully localized determinant. A special attention is thus devoted to 
the calculation using the maximum-overlap hybrids. 

2. Method and Results 

A. Method 

We used the formulas given in Paper III for the zeroth, second and third 
order energy. Only the zeroth order energy, which is the mean value of the 
Hamiltonian for the fully localiced determinant is an upper bound to the energy. 
The second and third order corrected energies may be below the exact energy. 
It is tempting then to calculate an upper bond for the corresponding wave function. 
If 7~0 is the zeroth order determinant and ~1 the first order correction to the 
wave function, the first order wave function is 

~ 1 = 7 J o + ~  with 

and its energy is given by 

( ~/0 I I//1 ) ----" 0 (intermediate normalization) 

ff~l I HI a~l) E2 +E3 
- Eo + (1) el -- (~1 ]~1) 1 + N  

where E 2 and E 3 are the second and third order corrections to the energy and 
N = (~ul I tP 1) is the norm of the first order correction to the energy. One may 
improve slightly the result with little supplementary work by putting as Hylleraas 
proposed [4] 

�9 ; = % + ~ ~ ,  (2) 
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where c~ is a parameter which is determined variationaly. Then 

(2c~ - 0~ 2 ) E 2 -~- cdE 3 
e'l = E ~  + l + c d N  (3) 

and ~ is determined by a minimization of@ This leads to a second degree equation 
in c~. 

In the text el will be referred to as the energy of the first order wave function 
and e~ as the energy of variated first order wave function. Brueckner [5] has 
criticized the use of these bounds for the correlation problem. When the number n 

of particles increases, E2, E 3 and N increase as n. Thus the ratio E2 +E3  does 
I + N  

not increase as n, as it should do, and one only gets a decreasing part of the correla- 
tion energy. This is due to the fact that the normalization introduces some higher 
order terms which are in fact cancelled by properly fourth-order terms. The use 
of e 1 and e' 1 is not recommended for large systems but was interesting in our case 
to compare the conditions (hybridization and polarity) which minimize the 
energies of the fully localized determinant and of the first order perturbed wave 
function. We used the classical CNDO hypothesis [3] with hydrogen Slater 
exponent Z ,  equal to 1.2. The values of (I u + A,)/2 and of fl for carbon and 
hydrogen differ somewhat from those proposed by Pople and Segal I-3] by a 
reduction factor, choosen to fit energies on ab initio calculations in ethane, 
ethylene and acetylene [6]. 

The problem has been extensively examined in the case of cyclopropane and 
cyclobutane, and some comparisons are given between two types of hybridization 
(canonical and maximum overlap) for a series of small strained molecules. 

B. Cyclopropane and Cyclobutane 

If we assume a planar and regular geometry these molecules have a threefold 
and fourfold symmetry and all the CH (CC) bonds are equivalent. Then the 
orthogonality requirements only let two parameters in our zeroth-order wave 
function if we want it to keep the molecular symmetry. We may fix for instance 
the C hybrid directed toward the neighbouring carbon atom by fixing for instance 
its s character. This is the first parameter. Then the other hybrids are fixed 
either by symmetry or by orthogonality. There is no polarity in the C-C bonds. 
But one may choose arbitrarily the polarity of the CH bonds. This gives a second 
parameter. If we call d the polarity of the bond, the coefficients of the bonding CH 
orbital are 

1 - d  
xH= - 2 

1 + d (4) 
Xc= 2 

respectively the H l s  atomic orbital, and C hybrid. 
The fully localized determinant presents a minimum in energy which corre- 

sponds to the polarity 0.03 and an s character of 0.47. The energy is quite sensitive 
15 Theoret. chim. Acta (Berl.) Vol. t5 
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to the hybridization state: the minimum for the 0.4 s character is 0.8 eV above 
the absolute minimum. The Del Re's [7] procedure to obtain the maximum 
overlap gives an s character of 0.43. It appears that this criterion, which is purely 
spatial, only gives a minimum 0.3 eV above the absolute minimum for a fully 
localized determinant. On the contrary the pure sp a hybridization, which seems 
to be wrong for such bond angles, gives an energy closer to the absolute minimum. 

The energy is of course also dependent of the CH bond polarity. But the 
value 0.03 is very close the polarity that one gets from the SCF calculation or 
from a typical saturated CH bond dipole moment. One may remark however 
that the best polarity is not the same for the various states of hybridization. 

The second order correction is negative and large (about 8.9 eV) and comes 
mainly from delocalization monoexcited states (~  3 eV), the intra-bond correlation 
(-~ 3.2 eV) and the inter-bond correlation energies (--1.6 eV). The second order 
corrected energy (Fig. 2) presents now a reversed picture of Fig. 1 : there is a 
maximum for s = 0.48 and d = 0.03. One may notice that the amplitude of the 

_ 1 7 5 5 , 0 0  J 0./. 

- 1755.25 0 0./.2 

- 1 7 5 5 . 5 0  

/.Z, 

- 1755.75 

- 1 7 5 6 . 0 0  

- 175G.25 

' o.'o5 ' 0'.io o.~s " -  

F igs .  1-5 give the various energies for the cyclopropane molecule (calculated with the following 

geomet ry : / ca=  1.08/~;/cc = 1 .53/~,~1C~= 118 ~ 

Fig. 1. Cyclopropane zeroth order energy, E o: energy of the fully localized determinant as a function 
of the polarity (in abscissa) of CH bonds and of the s character of the CC bonds 
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Fig. 2. Cyclopropane second order corrected energy, E o + E2. (same variables) 
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Fig. 3. Cyclopropane third order corrected energy, E o + E z + E3. (idem) 
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Fig. 4. Cyclopropane energy of the first order corrected wave function kul, ~1. (idem) 

- 1761.8 

- 1762.0 
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Fig. 5. Cyclopropane energy of the best wave function of the form ku 0 + c&ua, El. (idem) 

var ia t ions  are  d imin i shed :  the m a x i m u m  for s = 0.40 is only  0.4 eV be low the 
m a x i m u m  for s = 0.48. T,h'e best  po la r i ty  depends  more  s t rongly  of  the s character .  
These results  seem to indicate  tha t  the worse  the zero th  order  wave funct ion is, 
the s t ronger  is the second o rde r  cor rec t ion ;  when the s tar t ing po in t  is too  bad,  
the second o rde r  cor rec ted  energy becomes  too  low, far be low the reasonab le  
value. 

The  third order energy is posi t ive,  but  depends  s t rongly  ( -  0.2 < E 3 < 1.0 eV) 
of  the values of the parameters .  The  th i rd  o rde r  energy curves (Fig. 3) are  more  
complex.  F o r  each value of s, the  curve presents  a m i n i m u m  as a funct ion of the 
polar i ty .  But for smal l  unreal is t ic  values of  s, the best  po la r i ty  seems meaningless ,  
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Table 1. C yclobul ane 0 polarity structures as a function of the 2 s character in CC bonds 
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s 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 
E0 -2736.931 -2737.715 -2738.363 -2738.843 -2739.123 -2739.187 -2739.035 -2739.545 
m 1 - 0.247 .- 0.205 - 0.166 - 0.129 - 0.095 - 0.065 - 0.040 - 0.020 
m 2 - 5.404 - 4.373 - 3.564 - 2.988 - 2.675 - 2.649 - 2.944 - 3.596 
d 1 - 4.474 - 4.458 - 4.446 - 4.439 - 4.437 - 4.442 - 4.452 - 4.470 
d 2 - 1.890 - 1.871 - 1.853 - 1.838 - 1.826 - 1.816 - 1.808 - 1.804 
Eo+E 2 -2748.947 -2748.623 -2748.393 -2748.238 -2748.158 -2748.160 -2748.280 -2748.487 
m 1 - d 1 0.057 0.047 0.038 0.030 0.022 0.015 0.009 0.004 
m 1 - m 1 0.052 0.043 0.035 0.027 0.020 0.014 0.008 0.004 
rn l -m2 0.437 0.338 0.249 0.170 0.103 0.049 0.009 - 0.013 
m 1 - d 2 0.064 0.053 0.043 0.034 0.025 0.017 0.010 0.005 
m z - d  z - 0.020 - 0.041 - 0.056 - 0.065 - 0.069 - 0.066 - 0.056 - 0.038 
d I - d 2 0.827 0.811 0.797 0.785 0.775 0.768 0.763 0.761 
m e - m z 0.714 0.402 0.192 0.093 0.112 0.256 0.526 0.921 
d 2 - d 2 0.254 0.254 0.254 0.254 0.255 0.257 0.260 0.263 
E 3 2.386 1.909 1.553 1.329 1.244 1.212 1.532 1.908 
E o + E z + E  3 -2946.561 -2746.713 -2746.839 -2746.909 -2746.912 -2746.848 -2746.748 -2746.578 

Same notations than in Ref. F2]. 

a n d  t h e r e  is n o  a p p e a r e n t  a b s o l u t e  m i n i m u m .  F o r  b a d  va lues  of  s a n d  d the  ser ies  

s e e m  to d iverge .  T h e  resu l t  is n o t  very  s t ab l e  b u t  for  a r e a s o n a b l e  r a n g e  o f  va lues  

o f  s a n d  d the  d e v i a t i o n  is n o t  l a rge r  t h a n  0.3 eV. 

T h e  s t ab i l i t y  is s ign i f i can t ly  i m p r o v e d  w h e n  o n e  t akes  an  u p p e r  b o n d  el o r  

e~ (Figs.  4-5) .  T h e  n o r m a l i s a t i o n  cos t s  a b o u t  2 eV w h e n  c o m p a r e d  wi th  t he  t h i r d  

o r d e r  resul t .  T h e  sca la r  v a r i a t i o n  l e ad ing  to  e' 1 on ly  gives an  i m p r o v e m e n t  o f  

0.3 eV for  t he  absol!ute m i n i m u m ,  b u t  it s tab i l izes  s t r o n g l y  the  resu l t s  for  less 

rea l i s t ic  va lues  of  s a n d  d. T h e  a b s o l u t e  m i n i m u m  is o b t a i n e d  for  s--_ 0.46 a n d  

d -~ 0.035, w h i c h  are  n o t  far  f r o m  the  bes t  va lues  for  t he  z e r o t h  o r d e r  d e t e r m i n a n t .  

But  n o w  the  cu rves  a re  m u c h  closer .  F o r  e'l for  i n s t a n c e  the  m i n i m u m  c u r v e  

s = 0.43 lies o n l y  a b o u t  0.05 eV h i g h e r  t h a n  the  a b s o l u t e  m i n i m u m .  This  m e a n s  

t h a t  t he  first  o r d e r  c o r r e c t i o n s  c o m p e n s a t e  n ice ly  the  defec ts  o f  the  z e r o t h  o r d e r  

w a v e  func t ion .  

W e  o n l y  give the  va lues  o f  the  ene rg i e s  for  a ze ro  p o l a r i t y  (Table  1) for  t he  

c y c l o b u t a n e  m o l e c u l e a .  T h e  d i f fe rences  o f  t he  z e r o t h  o r d e r  ene rg ies  are  m u c h  

m o r e  p r o n o u n c e d  b u t  t he  s e c o n d  a n d  t h i r d  o r d e r  c o r r e c t i o n s  give a g o o d  s t ab i l i t y  

for  r e a s o n a b l e  v a l u e s  o f  h y b r i d i z a t i o n  a n d  p o l a r i t y  (]AE[ < 0 . 2  eV). T h e  t h i r d  

o r d e r  c o r r e c t e d  ene rg i e s  s e e m  a n y w a y  less sens i t ive  to  the  ch o i ce  o f  t he  p a r a m e t e r s  

t h a n  in the  case  of  c y c l o p r o p a n e .  T h e  bes t  z e r o t h  o r d e r  va lue  of  t he  s c h a r a c t e r  

is 0.50(i.e. t he  sp 3 h y b r i d i z a t i o n  s ta te)  whi le  Del  Re ' s  bes t  o v e r l a p  gives  0.47 a n d  

R a n d i c ' s  c r i t e r i o n  [-8] gives  0.435. 

C. Inf luence o f  the Choice  o f  the Hybr ids  in a Series o f  Smal l  Strained Molecules  

In  o r d e r  to  see w h e t h e r  t he  m e t h o d  c o u l d  be a p p l i e d  wi th  e n o u g h  a c c u r a c y  

to  s o m e  c h e m i c a l  p r o b l e m s  we d e c i d e d  to  c o m p a r e  the  resu l t s  o b t a i n e d  by  t h r e e  

d i f fe ren t  ways  for  a ser ies  o f  sma l l  m o l e c u l e s  

Calculated with the following geometry: lcH = 1.09 A, lcc = 1.548 A, HCH = 114 ~ 
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Table 2. Comparison of  the results of  canonical and maximum overlap hybridization on small strained molecules. For 
a detailed description of  hybridization see appendix 

Bicyclobutane 

can. Del Re's 
hybrid, hybrid. 

E ~ - 2422.042 - 2426.286 

m 1 - 0.111 - 0.203 
m 2 - 9.086 - 5.502 
E ~  -2431.239 -2431.991 
d 1 - 4.471 - 4.059 
d 2 - 3.653 - 3.321 
E ~ + E 2 -2439.365 -2439.373 

m t - d 1 0.024 0.045 
rn 1 - m 1 0.021 0.036 
ml - mz 0.255 0.211 

ml - d2 0.026 0.045 
~n 2 - d  2 0.105 - 0.353 
t 1 - d 2 2.124 1.481 
~2 - m2 - 1.130 - 0.445 

4~2 - d2 0.847 0.521 
E ~ + E 2 + E 3 -2437,080 -2437.830 

ESCF -- 2432.866 
E~ ~ 1676.616 

Esc F +E~ - 756.250 
go +E~ - 745.426 - 749.670 
~o -bm 1 -1- m 2 4- E v - 754.623 - 755.375 
~o + E 2 +E~ - 762,749 - 762.749 
g ~  - 760,464 - 761214 

Methylene 
cyclopropane 

can. Del Re's 
hybrid, hybrid. 

-2333.893 -2334.229 

- 0 . 1 0 0  - 0.141 
- 4.041 - 3.997 
-2338.034 -2338.367 

~- 4.037 - 4.036 
- 3.141 - 3.132 
-2345.213 -2345.537 

0.022 0 .030  
0.010 0.016 
0.024 0.131 
0.012 0.019! 

- 0.079 - 0.204 i 
1.501 1.498 
0.570 - 0,304 
0.791 0.772 

-2342.360 -2343.575 
-2338.900 

1585.042 
- 753.858 
- 748.851 - 749.187 
- 752.992 - 753.325 
- 760.171 - 760.495 
- 757.318 - 758538 

Methylene 

cyclopropene 

can. Del Re's 
hybrid, hybrid. 

- 2026.315 - 2026.926 
- 0 . 1 1 4  - 0.181 
- 4.990 - 4.273 
- 2031.419 - 2031.419 
- 3.678 - 3.681 
- 4.741 - 4.698 
-2039.839 -2039.761 

0.025 0.038 
0.006 0.016 
0.050 0.108 
0.007 0.020 

- 0.078 - 0.1.43 
2.412 2.386 

- 0.164 - 0.536 
1,647 1.620: 

-2035.933 -2036.249 
-2032.167 

1313.847 
- 718.320 
- 712.468 - 713.829 
- 717,572 - 717.533 
- 725.992 - 725.914 
- 722.086 - 722.402 

Cyclobutadiene 

can. Del Re's 
hybrid, hybrid. 

- 2109.855 - 2110.093 

- 0.155 - 0.189 
- 2.646 - 2.395 
-2112.556 -2112.67" 
- 3.679 - 3.67( 
- 4.788 - 4.787 
-2121.085 -2121.13t 

0.026 0.041 
0.018 0.029 
0.045 0.147 
0.022 0.035 

- 0.031 - 0.041 
2.512 2.513 
0.003 - 0.184 
1.993 1.972 

-2116.495 -2116.631 
-2112.966 

1396.026 
- 716.940 
- 713.829 - 714.067 
- 716.630 - 716.651 
- 725.059 - 725.110 
- 720.469 - 720.605 

a E~ = nuclear repulsion energy -- other notations as in Ref. [2]. 

1. T h e  s i m p l e  S C F  p r o c e d u r e ,  

2. O u r  p e r t u r b a t i v e  m e t h o d  w i t h  t w o  d i f f e r e n t  s t a r t i n g  p o i n t s ,  

- t h e  c a n o n i c a l  h y b r i d i z a t i o n ,  

- t h e  D e l  R e ' s  b e s t  o v e r l a p  c h o i c e  o f  t h e  h y b r i d s .  

W e  g i v e  i n  T a b l e  2 t h e  d e t a i l e d  r e s u l t s  f o r  a s e r i e s  o f  f o u r  m o l e c u l e s .  T h i s  

s m a l l  l i s t  i n v o l v e s  t w o  p a i r s  o f  i s o m e r s  t h e  b i c y c l o b u t a n e  a n d  m e t h y l e n e  c y c l o -  

p r o p a n e  o n  o n e  h a n d ,  a n d  t h e  m e t h y l e n e  c y c l o p r o p e n e  a n d  t h e  c y c l o b u t a d i e n e  

o n  t h e  o t h e r  h a n d .  

T h e s e  c a l c u l a t i o n s  a r e  i n t e r e s t i n g  f r o m  t w o  p o i n t s  o f  v i e w .  

A s  c o n c e r n s  t h e  s t a b i l i t y  o f  t h e  m e t h o d ,  a n d  t h e  c h o i c e  o f  t h e  a t o m i c  h y b r i d s ,  

i t  a p p e a r s  t h a t  t h e  r e s u l t s  o f  t h e  t w o  p e r t u r b a t i o n  e x p a n s i o n s  a r e  v e r y  c l o s e .  T h e  

m a x i m u m  o v e r l a p  c r i t e r i o n  g i v e s  a b e t t e r  z e r o t h  o r d e r  d e t e r m i n a n t  i n  f o u r  

c a s e s ,  s o m e t i m e s  b y  a v e r y  i m p o r t a n t  a m o u n t ,  a n d  i t  s e e m s  a c o n v e n i e n t  p r o c e d u r e .  

C o n c e r n i n g  t h e  c o m p a r i s o n  o f  t h e  e n e r g i e s  o f  t h e  i s o m e r s ,  i t  s h o u l d  b e  m e n -  

t i o n e d  t h a t  T h o r n t o n  a n d  J o r d a n  n o t i c e d  t h a t  t h e  C N D O - S C F  r e s u l t s  [ 6 ]  o f t e n  

p r e d i c t  i n c o r r e c t  r e l a t i v e  e n e r g i e s  ( s t a b i l i t i e s )  o f  i s o m e r s ,  e s p e c i a l l y  w h e n  t h e y  

h a v e  a d i f f e r e n t  n u m b e r  o f  d o u b l e  b o n d s .  W e  r e p r o d u c e  i n  T a b l e  3 t h e  d i f f e r e n c e s  

b e t w e e n  t h e  e n e r g i e s  o f  r e s p e c t i v e l y  b i c y c l o b u t a n e  (I) ( m e t h y l e n e  c y c l o p r o p e n e  ( I I I ) )  
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Table 3. Energy differences between isomers (in eV) (includin 9 nuclear repulsions) 

method 0 th ,order SCF 2 nd order 2 "a order 3 rd order 
monoexc, total monoexc. 

mole- ~ only only 
cules 

3 ra order 
total 

El-El l  -0.483 -2.392 -2.050 -2.272 -2.091 -2.681 
Enl --  E i v  -t- 0.988 -- 1.380 -- 0.882 -- 0.804 -- 1.286 -- 1.797 

and methylene cyclopropane (II) (cyclobutadiene (IV)). The relative stabilities of 
these isomers are not known experimentally, but it is interesting to analyse the 
beha.viour of the difference in the perturbation series. 

The fully localized energies are completely off. The main difference comes 
from the delocalization monoexcitations (m2) which are taken into account in 
the SCF process: the diexcitations which lead to the so called correlation energy 
do not introduce significant modifications in the 2 nd order energy (compare 
columns 3 and 4 of Table 3). This result is actually surprising for these isomers 
are very different, with very different bond lengths and one could have imagined 
that the correlation energy would be very different and contribute much to the 
isomerization energy. Appearingly approximate cancellations occur and the 
differences between the 2 nd order energies, much below the SCF levels, are not 
far from the differences between the SCF energies. However the diexcited con- 
figurations give an important  contribution at the third order. 

3. Discussion: The Maximum Overlap Hybridization and Energetic Properties 

The main conclusion of this analysis is that: 
1. The zeroth order, fully localized determinant energy is quite sensitive to 

the choice of the bond orbitals and, when they are constructed of two hybrids, to the 
choice of the hybrids. This confirms the "ab initio" analysis on N H  3 [9], H 2 0  [10], 
and other small polyatomics molecules [11], mainly by Del Re, McWeeny and 
Ohno. 

At this step the investigation has only a conceptual interest, to demonstrate 
that a "chemical-formula" wave function in which each pair of electron is in a 
chemical bond or lone pair, could have a large overlap with the SCF wave function 
and an energy not far above the SCF energy. But one cannot remain at this step. 
It is of poor  interest to improve this zeroth order wave function, which needs a 
certain work to be built, in the direction of the SCF determinant, as Hamano  
did [-12]. 

An approximation as the fully localized determinant is only interesting as the 
zeroth order step of a process which enables to go beyond the classical SCF 
scheme, or which presents a greater simplicity and intelligibility. 

2. The perturbative development of the correspondant configuration inter- 
action matrix leads to both advantages (inclusion of a part  of the correlation 
energy and clear physical significance of the various terms). Using this technique, 
the final result becomes less sensitive to the choice of the basic parameters (bond 
hybridation and polarity of the bonds). The perturbation expansion compensates 
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most of the defects of the zeroth order determinant: the classical hybridization 
or the maximum overlap hybridization lead to energies which are very close to 
the minimal energy. 

An other amazing phenomenon is that the maximum overlap criterion does 
not give the best energy for the fully localized determinant. In other words the 
best bond orbitals to construct the fully localized determinant are not built with 
the hybrids optimizing the overlap in the bonds. This fact is not surprising, since 
the maximum overlap criterion is a spatial criterion, while we look for an energy. 
One could imagine that the disagreement would disappear when the non diagonal 
monoelectronic matrix elements are supposed to be proportional to the overlap: 

flXY = KSxy .  (5) 

This is not a sufficient condition. It is also necessary that 

1. K is independant of the bond. 
2. There is no polarity in the bond Molecular Orbitals. 
3. The approximations over the nuclear and coulombic atomic orbitals are 

those of the CNDO II scheme (all tri- and quadriorbital bielectronic integrals 
neglected, all bielectronic bi-orbital integrals equal between all the charge 
distributions p p of atom A and qq of atom B, nuclear integrals equal to bielectronic 
integrals). 

With the two last assumptions the bielectronic repulsion and nuclear attraction 
are constant when one changes the hybridization and are not concerned in the 
variation of the hybridization. 

The diagonal monoelectronic elements e~ may depend of the hybridization 
state (and for instance their value may be different for s and p). But the ortho- 
normality conditions of the hybridization transformation and the second condition 
insures that the sum of the diagonal monoelectronic matrix elements 

Z O~i:C 

is constant, although the e~ depend of the hybridization. 

Then the energy may be written as 

2 Ci -~- 2 (O~i "[- O~'i) AV 2 2fi, 
i i i 

(6) 

(7) 

where the c~ summations over i indicate summations over all bonds (and lone 
pairs), ~i and e'i concern the two hybrids of the bond i, and c~ is characteristic of the 
electrostatic energy of bond i. The conditions 0 and 1 insure that the energy will 
be minimum if ~ S i (i.e. the sum of bond overlaps) is maximum. 

i 
When one forgives one of these conditions, for instance if one introduces 

polarities in the bond, or if one uses the Wolfsberg-Helmholtz approximation [13] 
as in the CNDO scheme: 

(~x + ~u (8) flXY = KSxy 2 
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The maximum overlap does not give the best energy. In the last case for instance, 
one still has ~ ei = c, but the condition: ~ 2fl~ maximum leads to 

i 

+ as ; ]  = 0 .  (91 

For instance in the case of cyclopropane, one must minimise flcc + 2riCH with 
respect to the s character, and one obtains: 

dScc dec dScu de'c 
as ec + d s -  Scc + (a~ + e,) - d s - -  + ~ Scn = 0 (10) 

where e c is the monoelectronic diagonal element of the C-C carbon hybrid, and 
e~ corresponds to the C hybrids directed towards the proton. Then, due to the 
Eq. (6) dec de~ 

- ( 1 1 )  
ds ds 

and the condition may be rewritten: 

dScc dS'cn 
@ s  c (Scc - Sc~) = 0 (12) ec + (ec' + e . )  + 

dScc 2dScH = 0 (Randic's maximum overlap criterion) which is different from d s s -  + d--~- 

except if e~ = an = ec Sc~ = Scc. 

With the Wolfsberg-Helmholtz approximation, the maximum overlap criterion 
cannot give the minimal energy for the fully localized determinant except if the 
system is homogeneous (same e and S), which is a rather uninteresting case. 

What we called the maximum overlap criterion herebefore was the maximum 
of the sum of bond overlaps. This is a special case of Randic et al. procedure [8]. 
The Del Re's process [7] that we used actually maximizes the overlap in each 
bond with hybrids exactly pointing along the bonds, then orthogonalize these by 
a local transformation allowing variations in the directional properties of the 
hybrids according to the relative values of initial bond overlaps. Randic et al. [8] 
introduced a different ponderation of the bond overlaps; they maximize actually 
the function ~ aiSi 

i 

where the a values are characteristics of the bonds. It is clear however that this 
improvement cannot :reproduce the optimal behaviour required by the Wolfsberg- 
Helmholtz approximation (Cf. Eq. [9]). The fact that the Randic et al. criterion [8] 
has given poorer results in our case than the Del Re's procedure may come 
either from a bad choice of the constants a~ (related to the overlaps) or to the fact 
that their calculatior~Ls were derived with Z H = 1.00 while ours are done with 
Zr~ = 1.2. 

Anyway the results after the third order are not very different and for unstrained 
molecules the deviation from one of the canonical hybridizations of the best fully 
localized MOs is sufficiently small to be neglected or accounted for by one of 
the classical Maximum Overlap criterions. 
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of the U.S. PuNic Health Service (National Institute of General Medical Sciences). 



222 F. Jordan, M. Gilbert, J. P. Malrieu, and U. Pincelli: 

Appendix 
Properties of typical hybridization schemes 

Cyclopropane 

Canonical Del Re's criterion 

C - C  overlap 0.5878 

C - H  overlap 0.7003 

Hybrid  character 
C - C  sp 3 Sp 5 
C - H  sp 3 Sp 2 

Angle  between orbital 

C - C  24~ ` 23~ ' 
C - H  4~ ' 0~ , 

C yclobutane 

Canonical  Del Re's criterion 

C - C  overlap 

C - H  overlap 

Hybrid  character 
C - C  
C - H  

Angle between orbital 
and bond. 
C - C  
C - H  

0.6213 

0.6897 

sp a sp 3.72 
sp 3' sp 2-47 

9o44 ' 7o48 ' 
2o16 , 0~ , 

Bicyclobutane 
E K ~ 1 7 6  

2 

C 3 - C 1 - H  angle 133 ~ 

Canonical Del Re's criterion 

Overlaps 

C1-C2 
C1-C 3 
C2-Hexo 
C2-Henao 
C1-H 

Hybrid  character 
1-3 
1-2 
1 -H  
2-1 
2 - H  

P 
sp 2 
sp 2 
sp 3 
sp 3 

0.5916 
0.4981 
0.7030 
0.7002 
0.7119 

Sp 9 
sp 3 
sp T M  

sp4.3 
sp 2.2 
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Methylene cyclopropane 

, ,w/ 
II 

Canonical Del Re's criterion 

Overlaps 
C1-C2 
C1-C3 
C3-C4 

C1-H 
CH-H 

Hybrid character 
C1-C2 
C1-C3 
C3-C1 
C3-C4 
C~-C3 
CI-H 
C4-H 

sp 3 

sp 3 
sp 2 
spZ( + pn) 
sp 2(+ pn) 
sp 3 

sp 2 

0.5878 
0.5968 
0.8029 

(0.2699n) 
0.7003 
0.7050 

sp 4.26 

sp 4.26 

sp 3.13 

sp T M  

spl.58 
sp 2.23 

sp 2.27 

Methylene Cyclopropene 

\ 4 /  

Canonical Del Re's criterion 

Overlaps 
C1-C2 
C1-C3 
C3-C4 
C1-H 
C4-H 

Hybrid 
C1-C2 
C1-C3 
CI-H 
C3-C1 
C3-C4 
C4-C3 
C4-H 

character 
sp2(a) 
sp2(a) 
sp 2 
sp 2 
sp2(a) 
sp2(a) 
sp 2 

0.7375 (0.2699 ~) 
0.6084 (0.2098 re) 
0.8026 (0.2699 n) 
0.7202 
0.7050 

spl.86 
sp TM 

sp T M  

sp T M  

sp 0"96 

sp 1.58 
sp2.27 
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C yclobutadiene 

341 
Canonical Del Re's criterion 

Overlaps 
C1-Cz 
C1-C,  
C I - H  

Hybrid character 
CI-C2 
C1-C~ 
CI-H 

0.6495 (0.2009 it) 
0.7619 (0.2699 re) 
0.7098 

sp2(~) sp T M  

sp2(~) sp 2"09 
sp 2 sp 1"60 
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